
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 330
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Pipeline Thread Construction Using VLSI
R.Mahalakshmi, Mr.C.Mukuntharaj, Dr.K.Ramasamy

Abstract— This paper describes the design of reconfigurable architecture that is to be used for image processing, multimedia processing
and wireless communication application. This reconfigurable architecture provides high computing power, flexibility and scalability through
processing level pipe-lining and improved functionality. The main aim of this paper is to perform many processing with in a small number of
clock cycles and thus increasing the pipelining speed..

Index Terms— Functionality, Image processing application, Pipelining, Processing array, Processing Element, Processing level pipelining
and Reconfigurable architecture

——————————  ——————————

1 INTRODUCTION
urrently image processing technology, multimedia communication and wireless communication application has been wide-
ly used. This developing technology requires high computing power, flexibility, reliability and scalability. An application

specific integrated circuits (ASIC) satisfies the high computing power but it is inflexible and scalable. General purpose multiproces-
sors are flexible but it insufficient to provide computing power. Yun Yang [1] [2]Reconfigurable architecture has been proposed.
The proposed architecture retrieves the shortcoming of existing system through processing level pipelining and improved func-
tionalities. Reconfigurable architecture supports processing level pipelining and thus provides flexibility and scalability to many
processes.
This project focus on the development of a synthesisable VHDL design for processing level pipelining. Generally pipeline is a set of
processing elements connected in serial, where the output of one element is the input to the next element. These elements are exe-
cuted in parallel or time sliced manner. There are many kinds of pipelining, are processing level pipelining, instruction level pipe-
lining, graphics pipelining, software pipelining and so on. Graphics pipelining is to apply the windowing, clipping, colouring, light
calculation and rendering technique to the image, it is possible to image processing application. Software pipelining is used for web
development. Instruction level pipelining is a RISC processor which performs many instructions with in a same cycle. Processing
level pipelining means processing many functions within a small number of clock cycles. Here the processing level pipelining is
used to reconfigure the architecture, which provides high computing power, high speed and flexibility.
Here the simulation of processing level pipelining is implemented using VHDL tool. VHDL is a hardware description language
which describes the hardware as different levels such as behavioural, structural and logical level. The main thing of VHDL is, it is a
strongly typed language, can not mix other types.

2 ARCHITECTURE
The overall architecture consists of input switch, output switch, local memory, processing array. The processing array consists of
number of inter-linked processing elements. The input and output switch is nothing but a multiplexer. It just useful for getting
input and producing output.

C

————————————————

• R.Mahalakshmi is currently pursuing masters degree program in computer
and communication engineering in P.S.R.Rengasamy college of engineering for
women, India. E-mail: mahalak.7@mail.com

• C.Mukuntharaj is currently working as a assistant professor in electronics and
communication engineering in P.S.R.Rengasamy college of engineering for
women, India. E-mail: mukuntharaj@psrr.edu.in

• K.Ramasamy iscurrently working as Principal and Professor in electronics and
communication engineering in P.S.R.Rengasamy college of engineering for
women,India. Email: ramasamy@psrr.edu.in

IJSER

http://www.ijser.org/
mailto:mahalak.7@mail.com
mailto:mukuntharaj@psrr.edu.in
mailto:ramasamy@psrr.edu.in

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 331
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig: 1 Overall Architecture.

The local memory is used to store the temporary data. The processing element is capable of performing basic arithmetic and
logical operation. The input 8 bit data is given to the both local memory and processing array. The local memory stores the data
before beginning of operation. The processing array consist of number of processing element connected in serial, each
processing element performs the basic operations based on image processing and multimedia application. There are 28 basic
operations are discussed here. After processing each operation, the output of 8 bit data was produced. The overall architecture
shown in fig 1.

2.1 Processing Element
Each processing element is capable of performing basic arithmetic functions, and has a small amount of local storage. Each pro-
cessing element has two 8-bit registers, named A and B. Register A acts as an accumulator, storing the result of arithmetic opera-
tions.
The current value stored in register A which is accessible to the neighboring processing units following each clock cycle. The B
register supplied additional operands, which load the value of an adjacent. Accumulator values can be used in future calcula-
tions. There is also a stack that is shared between A and B registers. It has a small local storage. The synthesis of one PE is
shown in Figure.2 this schematic shows the large number of logic elements that are required for every PE in the system.
Internal Signals of processing element:
 1. Accumulator A (8 bits):
The arithmetic and logical operations are stored in accumulator.

 2. Register B (8 bits):
Register B is used to provide an additional operand for arithmetic and logical operations.

 3. Stack (16x8bits):
The stack gives FILO storage if additional storage is required. It is possible to push values to the stack from A or B, and pop val-
ues from the stack to A or B.

I
N
P
U
T

S
W
I
T
C
H

O
U
T
P
U
T
S
W
I
T
C
H

LOCAL
MEMORY

 ………

PROCESSING
ARRAY

PE PE

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 332
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig2: Processing Element

 4. Enable Bit:
Each processing element is simultaneously performing an identical operation. Enable signal is internal to the PE, and is set de-
pends upon the value of accumulator A, through the Zero Flag. There is a single instruction to re enable all PEs, ensuring a
known configuration.

 5. Zero Flag:
The zero flag is set when the value of accumulator A is zero. It is possible to disable PEs.

The following table describes the function of processing elements. This table has three fields, the first field is op-code, second
one is instruction which is the basic instruction of image processing and multimedia processing, the last field is description of
instruction which performs, depends upon the op-code the instructions are performed.

Table: 1 Processing Element Instruction Set

Op-
code

Instruction description

0 NOP No operation

1 Copy BA Copy from B to A

2 Copy AB Copy from A to B
3 OR Bitwise Or
4 AND Bitwise And

5 XOR Bitwise Xor

6 Not of A Inverse of A

7 Sum Add B to A

8 Sub Sub B to A
9 Abs A Absolute value of A

10 Clr A Clear A

11 Clr B Clear B

12 Load up Load from PE above into B
13 Load down Load from PE below into

B
14 Load left Load from PE left into B

15 Load right Load from PE right into B

16 swap Swap value of A and B

ALU

REGISTER A REGISTER B

STACK

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 333
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

17 Double A Double the value A

18 Halve A Halve the value A

19 Max Maximum of A and B
20 Min Minimum of A and B
21 Push A Push the value of A to

stack.
22 Pop A Pop the value of A from

stack.
23 Push B Push the valve of B to

stack.
24 Pop B Pop the valve of B from

stack.
25 Inc A Increment A

26 Dec A Decrement A

27 Disable Z Disable PE with a=0

28 Enable All Enable all PEs

29 SLT Set Less Than

This table describes the 29 operations, among 29 operations AND, OR, XOR, NOT A are logical operations, remaining are gen-
eral arithmetic operations. The push and pop are stack operations.

2.2 Processing Array

Processing array consist of a large number of linked processing elements. There are different configurations of processing
elements generated in each corner or unique edge of the grid structure, where N is the dimension of the processing array, that is,
an N-size array contains N2 processing elements. This prevents a processing element from attempting to read inputs from
elements that do not exist. For example the “RT” (Right-Top) processing element does not have an in right or in above port
instantiated. In that situation, there are not appropriate neighboring ports to connect to.

Table: 2 Generation of processing array

Algorithm1:

Generation of Processing Elements :
G1 : for m in N1 downto 0 generate In X direc-

tion
G2 : for n in N1 downto 0 generate In Y direc-

tion
This example display one of the nine configura-

tions.
LT: if ((m=0) and (n=0)) generate

Generate Left Top unit .
apu0 : pu port map(
operation =>gInstruction , Same for all Pes
clk=>clk ,
dummy=>gDummy(N⇤n+m),
output=>dout (m , n)

Read by adjacent units .
in_down=>dout (m , n +1) ,
Only two directional connections .
in_right=>dout(m+1,n),
in_load=>dout(m+1,n),
For loading data out_load=>gOut, Unique to LT

);

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 334
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

end generate LT;
end generate G2;
end generate G1;

A three PE by three PE array has to be used to simply the operation. For basic operations, while larger systems have been syn-
thesized when required. In addition to the required changes to the directional input port configuration for each of these nine
cases, the Left Top (LT) element, and the Right Bottom (RB) element are used to output and input image data for the entire grid,
and they are connected to the outer structure of the processing array directly.
This algorithm is similar for all cases of processing element. The required processing elements are generated through a pair of
nested generate statements. When the synthesizer repeats the process through the nested loops, PEs of the required configura-
tion are generated and linked via an array of output signal

3 SIMULATION RESULT

3.1 Processing Element Output

3.1.1 Load up to b
This simulation shows that the value of in_up loaded on to the b register. The b register value moved to the accumulator “a”
register.

Fig: 3.1 output of processing element

Table: 3.1 Input ports and its value

Input ports values
In_up 8h’35
In_down 8h’10
In_left 8h’15
In_right 8h’30
In_load 8h’20

3.1.2 Load left to b
This simulation shows that the value of in_load loaded on to the b register. The final result stored in accumulator “a” register.
Input and output values are listed in the table 3.1 and 3.2

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 335
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig: 3.1 output of load left to b

Table: 3.2 Output ports and its value

Output
port

Load up
to b

Load left
to b

Reg b 8h’35 8h’15
Reg a 8h’35 8h’15

3.1.3 Overall Processing Element Output
This simulation shows that the overall output of processing element. It consists of two registers for storing the result. The two
registers are accumulator register and b register. The final output stored in the accumulator “a” register. The circle shows that,
when the op code is 11001, the value of “a” register gets increased. Likewise the general 29 operations performed.

Fig: 3.1 output of processing element

3.2 Processing Array output
This simulation shows that the 28 operations of the processing array. Here the result stored in the b register. Then the final result
stored in the accumulator “a” register. The circle shows that processing level pipeline is achieved after some basic operations
(load, shift and move).

Fig: 3.2 output of processing array

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 336
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

In addition operation, the each process is added with previous process. I.e. during arithmetic operation the result of the previ-
ous one is added to the next processing. It took single pulses for single processing. This is known as processing level pipe-lining.
The purpose of processing level pipe-lining is, it perform many processing within a short number of pulses.

3.3 Synthesis Result

RTL Top Level Output File Name: PA.ngr

Top Level Output File Name: PA

Output Format: NGC

Optimization Goal: Speed

Keep Hierarchy: NO

Design Statistics

IOs: 247

Cell Usage :

BELS: 99563
BUF: 98
GND: 1

LUT2: 7440
LUT3: 8427
LUT3_D: 1350
LUT4: 64700
#LUT4_D: 675
LUT4_L: 5625

MUXCY: 5175
MUXF5: 4271

VCC: 1
XORCY: 1800

Flip-flops/Latches: 32400
FDE: 32175
FDPE: 225

Clock Buffers: 1
BUFGP: 1
IO Buffers: 21
IBUF: 13
OBUF: 8

4 CONCLUSION
Reconfigurable architecture achieves processing level pipe-lining and improves functionalities for multimedia and image pro-
cessing application. This implemented system shows that a system consisting of a parallel processing array. It is made up of a
large number of interconnected Processing Units and it achieves high level of theoretical image processing performance, for per-
forming many processing in a small number of clock cycles. This sort of architecture would be especially effective when operat-
ing on larger image sizes, as many common image processing tasks can be performed at a reduced order compared to serial
processing.
With the current instruction set, commercially available FPGA hardware does not offer sufficient logic area to implement this
generalized a parallel architecture on a realistic scale, as even relatively small processing arrays will consume the entirety of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 337
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

available logic resources of current FPGA hardware. Unfortunately, with current technology, there are still significant compro-
mises that must be made to the generalized capabilities of individual processing elements, to ensure it is possible to implement
this kind of massively parallel architecture at useful image sizes. The chosen instruction set was relatively complex compared to
other research approaches, and it is possible that further simplification of the PEs abilities in favor of a greater level centralized
logic would allow for improved scaling.

5 FUTURE WORK
This project has demonstrated the possibility of developing a general purpose image processing architecture through the appli-
cation of massively-parallel grid architecture. In this case the architecture’s utility was benchmarked through the use of the Xil-
inx iSim simulator. It is expected that future work would include the synthesis of this design onto physical FPGA hardware.
And introducing of instruction level pipe-lining also expected, further to increase the speed of pipelining.

REFERENCES

 [1] Yun Yang,”Three-dimensional Image Processing VLSI System with Network- on-chip System and Reconfigurable Memory Architecture”,IEEE

Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011.
[2] Ashish khodwe, Chandrashekhar Bhoyar,“Design and Implementation of FPGA Based Bidirectional Network-on-Chip Router through Virtual

Channel Regulator”,International Journal of Application or Innovation in Engineering & Management (IJAIEM), Volume 2,Issue 6, June 2013 .
[3] Gert-Jan van den Braak “GPU-CC: a Reconfigurable GPU Architecture withCommunicating Cores” SCOPES ’13, June 19-21, 2013
[4] Hyo-Eun Kim, Student Member, IEEE, Jae-Sung Yoon, Student Member, IEEE, Kyu-Dong Hwang, Student Member, IEEE, Young-Jun Kim, Stu-

dent Member, IEEE, Jun-Seok Park, Student Member, IEEE, and Lee-Sup Kim,“A Reconfigurable Heterogeneous Multimedia Processor for IC-
Stacking on Si-Interposer” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

[5] Mr. Sumedh. S.Jadhav, Prof. C.N.Bhoyar “Implementation of Embedded Multiprocessor Architecture Using FPGA ” International Journal of Sci-
entific & Engineering Research, Volume 3, Issue 1, January-2012.

[6] A. Ruta, R. Brzoza-Woch, and K. Zielinski, “On Fast Development of FPGA-based SOA Services,” Design Automation for Embedded Systems, vol.
16, pp. 45–69, Mar. 2012.

[7] A. Nieto, V. Brea, D. L. Vilariño, and R. R. Osorio, “Performance Analysis of Massively Parallel Embedded Hardware Architectures for Retinal
Image Processing,”EURASIP Journal on Image and Video Processing, vol. 2011, p. 10, Sept. 2011.

[8] A. Fijany and F. Hosseini, “Image Processing Applications on a Low Power Highly Parallel SIMD architecture,” in Aerospace Conference, 2011
IEEE, pp. 1 –12, march 2011.

[9] B. Krill, A. Ahmad, A. Amira, and H. Rabah, “An Efficient FPGA-based Dynamic Partial Reconfiguration Design flow and Environment for Image
and Signal Processing IPcores,” Signal Processing: Image Communication, vol. 25, pp. 377–387, June 2010.

[10] T.Kurafuji, M.Haraguchi, M.Nakajima, T.Gyoten, T.Nishijima, H.Yama- saki, Y. Imai, M. Ishizaki, T. Kumaki, Y. Okuno, et al., “A Scalable Mas-
sively Parallel Processor for Real-time Image Processing,”inSolid-State Circuits Conference Digest of Technical Papers(ISSCC), 2010 IEEE Interna-
tional, pp. 334–335, IEEE, 2010.

[11] N. Roudel, F. Berry, J. Serot, and L. Eck, “A New High-Level Methodology for Programming FPGA-Based Smart Cameras,” in Digital System
Design: Architectures, Methods and Tools (DSD), 2010 13th Euromicro Conference on, pp. 573 –578, Sept. 2010.

[12] J. Xiong and Q. Wu, “An Investigation of FPGA Implementation for Image Processing,” in Communications, Circuits and Systems (ICCCAS),
2010 International Conference on, pp. 331 –334, july 2010.

[13] Y.Hu and H.Ji, “Research on Image Median Filtering Algorithm and Its FPGA Implementation,” in Intelligent Systems, 2009.GCIS’09.WRIGlobal
Congress on, vol. 3, pp. 226 –230, may 2009.

[14] M. Prieto and A. Allen, “A Hybrid System for Embedded Machine Vision using FPGAs and Neural Networks,” Machine Vision and Applications,
vol. 20, no. 6, pp. 379– 394, 2009.

[15] Pei-Yin Chen, Chih-Yuan Lien, and Chi-Pin Lu, “VLSI Implementation of an Edge- Oriented Image Scaling Processor” IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009.

IJSER

http://www.ijser.org/

	1 Introduction
	2 architecture
	The local memory is used to store the temporary data. The processing element is capable of performing basic arithmetic and logical operation. The input 8 bit data is given to the both local memory and processing array. The local memory stores the data before beginning of operation. The processing array consist of number of processing element connected in serial, each processing element performs the basic operations based on image processing and multimedia application. There are 28 basic operations are discussed here. After processing each operation, the output of 8 bit data was produced. The overall architecture shown in fig 1.
	2.1 Processing Element
	Fig2: Processing Element
	Table: 1 Processing Element Instruction Set
	2.2 Processing Array
	Processing array consist of a large number of linked processing elements. There are different configurations of processing elements generated in each corner or unique edge of the grid structure, where N is the dimension of the processing array, that is, an N-size array contains N2 processing elements. This prevents a processing element from attempting to read inputs from elements that do not exist. For example the “RT” (Right-Top) processing element does not have an in right or in above port instantiated. In that situation, there are not appropriate neighboring ports to connect to.
	Table: 2 Generation of processing array
	3 Simulation Result
	3.1 Processing Element Output
	3.1.1 Load up to b
	Fig: 3.1 output of processing element
	Table: 3.1 Input ports and its value
	3.1.2 Load left to b
	Fig: 3.1 output of load left to b
	Table: 3.2 Output ports and its value
	3.1.3 Overall Processing Element Output
	Fig: 3.1 output of processing element
	3.2 Processing Array output
	Fig: 3.2 output of processing array
	3.3 Synthesis Result

	4 Conclusion
	5 Future work

